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Introduction: Collaborative Filtering and Clusters 
Alkindi recommends products (say, movies) to a user by identifying other users 
whose tastes are similar to those of the user, then recommending products that those 
similar users have tended to enjoy.  This approach is called collaborative filtering, 
because users collaborate to recommend products to each other, using one another’s 
opinions to filter out all but the most relevant content.   

A key difficulty with implementing robust collaborative filtering technology in real 
time has been scalability: accurately finding the most similar users to a given user as 
the user base grows has been viewed by some as computationally intractable.  Alkindi 
avoids this problem by moving the most computationally intense calculations offline.  
We use a batch process to divide our user base up into groups, or clusters, of users of 
similar tastes, and to compute a range of statistics associated with these user 
clusters.  To generate recommendations for a new user, we simply search through 
the clusters (rather than through the users) to find ones that reflect the user’s tastes, 
then recommend based on the statistics associated with such clusters. 

In other words, once the initial user cluster framework is set up offline, Alkindi can 
generate accurate recommendations in real time by the following simple steps: 

• Input: collect data on the user’s taste preferences 
• Clustering: use the data to assign the user to appropriate user clusters 
• Output: use the clusters to generate recommendations for the user 

 

Offline Clustering Framework 
Formation and Evaluation of User Clusters 

The Data and the Model 
Users express their tastes by assigning ratings to products.  For example, users of the 
Alkindi movie recommendation engine rate movies on a scale from 1 (low) to 6 
(high).  To model users so that they can be grouped together, Alkindi represents 
them geometrically as vectors in a high-dimensional space.  The coordinate axes of 
this space correspond to products; the coordinates of the point representing a user 
are that user’s ratings of those products.  Since it is impractical to ask users to rate 
every available product, an important issue is that, typically, only some of a user’s 
coordinates in rating space are known.  (In other words, our data is often sparse.) 

The Clustering Algorithm 
Alkindi partitions its existing user base into clusters using “K-means”, a statistical 
algorithm that maximizes the geometric tightness of the clusters.  Tightness depends 
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on the way in which distance in rating space is measured.  Alkindi has developed a 
novel metric that smoothly integrates all available data: in the case of movies, two 
users are close in rating space if they tend to see similar movies, and rate the movies 
they see the same way.  This helps alleviate the sparse data problem, as instances of 
a particular user not having seen a particular movie now become usable data. 

Evaluation of Cluster Quality 
The purpose of clusters is to generate product recommendations, and Alkindi 
evaluates them with this purpose in mind.  Once the clusters are formed, the 
software generates simulated recommendations, and estimates the quality of those 
recommendations by comparing them with existing user ratings.  This process is 
repeated a number of times, and the clusters that generate the best simulated 
recommendations are the ones the system uses to generate real recommendations 
for real users.  Carrying out this process offline ensures that clustering can continue 
until the clusters are known to generate effective recommendations. 

Alkindex 
In addition to evaluating overall cluster quality, Alkindi also estimates how accurately 
each particular user’s cluster assignment represents the user’s tastes.  This is done 
by estimating the extent to which personalized recommendations based on the user’s 
cluster membership improve on unpersonalized recommendations.  This estimate is 
used to generate the Alkindex, a graphical gauge that shows users how well the 
system knows them.  When the Alkindex is low, users are motivated to supply more 
data about themselves by rating more products, leading to better recommendations 
and enhanced user satisfaction.  In user testing of Alkindi’s movie recommendation 
engine, 79% of users said they were either strongly or very strongly motivated to 
rate more movies by the desire to improve their Alkindex. 

Grouping Products Enables Granular Characterization of User Tastes 

Typically, users’ tastes overlap on some products but not others.  (To take an 
extreme example, there is not much reason to believe that two people who like the 
same Westerns will also like the same computer books.)  Consequently, rather than 
trying to group users based on all available products, Alkindi groups them based on 
subclasses, called product clusters, which appear to have predictive value.  
(Predictive value means we can reasonably expect agreement on some products in a 
product cluster to indicate agreement on others.) 

Product clusters in the Alkindi recommendation engine currently correspond to movie 
genres: action films, comedies, etc.  The user base is partitioned into user clusters 
associated with each product cluster.  For example, each user belongs to an action 
user cluster, which agrees with the user on action movies and is used to recommend 
action movies to the user.  Similarly, each user belongs to a comedy cluster, a drama 
cluster, and so on.  The Alkindex then measures how effective all of the user’s 
clusters are likely to be at recommending movies to the user. 

Implementing more general techniques for grouping products (movies or otherwise) 
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based on a range of criteria is an important step in the future development of the 
Alkindi engine. 

 

Real-Time Clustering Process 
Step 1: Data Collection 

Data on Users 
The sparse data problem forces us to ensure that the data we do collect is as useful 
as possible.  Users can be expected to rate only a few products before asking for 
recommendations, and Alkindi chooses those products for maximum utility in 
characterizing the user’s tastes.  Initially, we ask users to rate popular products (for 
example, movies that most people have seen) whose ratings vary the most between 
different user clusters. 

The Alkindex motivates users who have already rated some products to ask to rate 
more.  Great care is taken to ensure that these additional products are appropriate to 
the individual user.  The engine considers to which clusters the user belongs, and to 
which other clusters he or she might reasonably belong.  It asks the user to rate 
products that the user is likely to have seen, and which differentiate most effectively 
between the different clusters to which the user could belong. 

Data on Products 
Each instance of a user rating a product adds to our knowledge of the user, and also 
to our knowledge of the product.  A second key function of Alkindi’s data collection 
system is to increase the amount of data we have on the available products in our 
database.  This broadens the base of recommendable products, and allows us to more 
accurately match those products with users who might enjoy them. 

Once our understanding of a user’s taste passes a certain threshold, the engine 
periodically asks the user to rate products in the database that need more ratings.  
Once again, the products are chosen to enhance the likelihood that the particular user 
be able to rate them.  In this process, products which are new to the database (for 
example, movies that have just been released on video) are favored, ensuring that 
we rapidly build up enough ratings for those products to begin recommending them. 

Step 2: Clustering Individual Users 

Anytime a user, whether new or existing, has rated some products, we know more 
about the user’s tastes than we did before.  Since our knowledge of the user’s tastes 
is summed up in the user’s cluster membership, we always update the user’s cluster 
assignments in response to any new ratings.   

The first time a user rates products in a particular product cluster, we assign them in 
real time to one of the user clusters associated with the product cluster.  This is the 
cluster to which the user is geometrically closest, based on our rating space model.   

If a user has already rated some products in a product cluster, he or she has already 
been assigned to a user cluster associated with that product cluster (either in the last 
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batch process or since).  A user who then rates some more products in that product 
cluster may be taken out of their current user cluster and assigned to a different one.  
This occurs if the user is closer to the new cluster than to the old one based on the 
updated ratings data. 

In either case, we ensure that users are always assigned to the most appropriate user 
clusters based on all the ratings they have submitted.  In other words, the system 
responds instantly to user feedback, updating its characterization of the user’s tastes 
based on that feedback.  Since clustering or reclustering a single user is a simple 
process, this instant response does not carry a high computational cost. 

Step 3: Generating Recommendations 

Stochastic Choice of Product Cluster 
Once the user has been assigned to user clusters based on all of his or her ratings, 
we are ready to generate recommendations.  We generate one at a time.  The first 
step in generating a single recommendation is to pick a product cluster to recommend 
from.  Dividing products into clusters allows us to measure the user’s tendency to 
favor particular product clusters, and to target our recommendations accordingly.  For 
example, if a user usually rates action movies low and romance movies high, the 
engine should recommend much more frequently from the romance cluster. 

Each time Alkindi’s engine is asked for a single recommended product, it uses a 
probabilistic (or “stochastic”) model for choosing the product cluster from which to 
pick this product.  A product cluster will be favored in this choice if: 

• It has more products from which to recommend. 
• The user tends to see products in the product cluster and rate them highly. 
• The user is well clustered with respect to the product cluster. 
• The user has responded positively in the past to recommendations from this 

product cluster. 
 
Advantages of the Stochastic Approach 
In addition to ensuring that recommended products typically come from product 
clusters favored by the user, the stochastic approach has several other advantages: 

• Variety.  Many competing recommendation engines tend to overweigh one 
kind of product (for example, recommending many Star Trek movies to 
someone who rated a single Star Trek movie highly).  Taking explicit care to 
recommend from many product clusters avoids this.  In user testing, 79% of 
the users polled by Alkindi were pleased with the diversity of the genres from 
which their movie recommendations came, and 68% were pleased with the 
mix of popular and obscure movies.  No other service tested offered such a 
high level of satisfaction with overall diversity. 

• Robustness.  Recommending based on a single group of similar users results 
in all recommendations being poor if the group is inappropriate for the user.  
Using several user clusters makes it more likely that some are well chosen, 
ensuring some good recommendations and allowing the user to get as many 
good recommendations as desired by spending enough time on the system. 
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• Responsiveness.  The stochastic method lets us distribute recommendations 
across genres according to our estimate of the user’s tastes, while providing a 
correction mechanism in case our estimate happens to be wrong.  (By design, 
unfavored genres will still appear once in a while, and positive user feedback 
will cause them to appear more in the future.)  73% of the users polled by 
Alkindi in user testing said they were satisfied with the engine’s understanding 
of their taste by the time they finished using it.  This number was higher for 
Alkindi than for any competing recommendation engine we tested. 

 
Stochastic Choice of Recommending Criterion 
Once a product cluster to recommend from is chosen, and similar users (who agree 
with the user on products in the product cluster) are identified, the engine must 
recommend a product liked by those similar users.  This product can be chosen based 
on a range of different criteria: high average rating among the similar users, many 
high ratings, seen by many of the similar users, and so on.  Each of these different 
recommendation algorithms will tend to produce different “types” of product from 
that cluster.  For instance, using “many high ratings” will tend to produce more well-
known products, and “high average rating” will tend to select niche products. 

The engine chooses a criterion stochastically out of the available ones, favoring the 
criteria whose recommendations the user has liked in the past.  The advantages of a 
stochastic approach are all present here, as the engine explores the range of possible 
recommendations (ensuring variety and robustness) and evolves to favor the kinds 
preferred by the user (responsiveness). 

Recommendations and Predicted Ratings 
Having picked a criterion on which to base its recommendation, the engine looks 
through the product cluster and recommends the highest scoring product according to 
the chosen criterion.  (Products that the user has already rated, or that have already 
been recommended, are passed over.) 

For each recommended product, the engine also returns a predicted rating --- the 
system’s best guess for how a user will rate a product if he or she sees or purchases 
it.  The engine computes this quantity based on the ratings of the user’s cluster 
associated with the product cluster in which the product lies.  If the product lies in 
several product clusters, then several user clusters are considered.  (For example, to 
predict how a user will rate “Blazing Saddles,” a comedy and a Western, we consider 
the opinions of those users who agree with our user on comedies and those who 
agree with our user on Westerns.)  If the predicted rating is too low, the product is 
rejected. 

Possible Further Work  
Elements Not Yet Complete in Production System 

The system described above has been fully tested as a prototype (including testing 
with real users, who compared the system with other, competing recommendation 
engines).  While most elements are currently present in the production version 
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currently available on the Alkindi web site (www.alkindi.com), the following are not 
yet fully implemented in production: 

• Full Alkindex  
• General Distance Model (current production version measures distance 

based on ratings only) 
• Predicted Ratings (module that displays these is currently in testing) 
• Full Functionality of Selecting Products for Rating (module that 

computes and uses a product’s rating variances over some, but not all, user 
clusters has not yet been built) 

 
In addition, many elements of the algorithm would benefit from additional tuning.  
There are many fixed parameters that play a role in the recommendation process.  
For example, only products that have been rated by a certain percentage of the users 
asked about them are eligible to appear on the first screen of products to rate.  The 
exact percentage threshold is a parameter that can be adjusted.  While we have good 
approximate values for all the parameters, and the most important ones have been 
optimized, we still need to tune the rest to ensure optimal performance. 

Future Research and Development Projects 

Recommendation From a Subset 
Alkindi intends to build a module that allows the engine to function smoothly when 
the universe of products from which we can recommend is restricted.  (For example, 
when working with a partner, we typically want to recommend only products offered 
by that partner).  A prototype version of this module is currently in development. 

Recommendation Based on Purchase Data 
The Alkindi recommendation engine characterizes user tastes through rating data.  
Alkindi intends to build a module that allows us to make recommendations to users 
who have submitted no ratings, but for whom we do have purchase data.  (For 
example, we could recommend videos to users for whom we have lists of previous 
rentals, without knowing how much they liked the videos they rented.)  Prototype 
code that does this has been developed, and is currently being evaluated. 

Cluster Initialization 
The K-means clustering procedure we use to form clusters offline is iterative: we first 
guess at what the clusters might be, then improve our guess until it stabilizes.  The 
outcome of the procedure can be improved by improving the quality of the first 
guess.  Typically, the first guess is random.  Inspired by clustering procedures used in 
bioinformatics, Alkindi has developed a novel way of making the first guess more 
representative of what the clusters are likely to be.  A prototype clustering module 
based on this improved initialization procedure still needs to be developed. 

Product Clustering 
As mentioned earlier, Alkindi intends to develop general software for grouping 
together products that are likely to have predictive value; that is, where a user’s 
rating for one product might reasonably predict that user’s rating for another product.  
This project is at a very early stage and needs significant research. 

http://www.alkindi.com/
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Performance Metric 
Optimization of Alkindi’s engine depends on having a way to evaluate its success.  
Standard methods do not attempt to measure the importance of 1) providing 
recommendations with proper attribute diversity; 2) instilling confidence in the user 
by demonstrating accurate predictions about the user's tastes; and 3) user comfort 
levels changing over time.  User simulations are combined with empirical data and 
mathematical models in arriving at a single performance measurement.  The 
algorithm is 75% complete, but as yet unimplemented. 


